
LATEX Example

David Dervishi

February 15, 2022

Contents

1 Introduction 1
1.1 Writing LATEX . 2

2 Minimal Example 2

3 Structuring Your Document 3

4 Packages And More On Commands 3

5 Listing Things 4
5.1 Itemize . 4
5.2 Enumerate . 5

6 Text Formatting 6

7 Math 6
7.1 Useful Commands . 7
7.2 Useful Environments . 8

8 Labels And References 9

9 Centering Things 10

10 Tables 10

11 Images And Figure Environments 11

12 Bibliography 12

1 Introduction

Hi! This is a small LATEX example that can serve as an introduction to some common features
of LATEX. I encourage you to look at the LATEX source of this document, as it is an example
that you may find useful, and it contains some comments and features that are not explained
in this text (like code snippets or hyperlinks).

1

1.1 Writing LATEX

If you want to work online, then you can use Overleaf1, which is frequently used and free
software, but requires an account. If you want to work on your machine, you can use a specialized
editor like TexStudio2, or any other text editor (many of them have a LATEX plugin). In both
cases you need to install a LATEX distribution, including some packages. For example, on
Debian-based systems, this should get you everything you could ever need

apt i n s t a l l t e x l i v e− f u l l

and this should get you most of what you could ever need on Arch-based systems

pacman −S t ex l i v e−most

2 Minimal Example

A simple LATEX document might look like this:

Listing 1: Simple LATEX document

1 \documentclass{ a r t i c l e }
2
3 \ t i t l e {Your Nice T i t l e }
4 \author{Your Name \and Name Of Teammate}
5
6 \begin{document}
7 \maket i t l e
8
9 % in t e r e s t i n g s t u f f (anyth ing a f t e r a ’%’ i s a comment)

10 \end{document}

Listing 1 already defines the basic structure of a document. You can see on the first line
that we are defining the class of document that we will be writing. In this case, we are using
the article class, which is probably the most common one. It is also the one that I used to
write the document you are reading. There are of course other document classes which you may
use depending on what you want to do, including beamer for slideshows or book for documents
with chapters.

Anything that starts with a \ is a command. The next commands that we use are \title
and \author, which define the title and authors of your document. If you are not working alone,
you can easily specify multiple authors by separating your names with the \and command.

Everything up to here is what we call the preamble of a document. This is the place where
you define document-wide commands, packages and options (take a look at the source of this
document for some examples!). Coming next is the interesting part of anything you will write,
namely the content. We are creating an environment using the \begin and \end commands.
You’ll be creating all sorts of interesting environments, but the specific one we are creating
here is document, which will (quite obviously) contain your document. We start by displaying
the title, authors and date of the document using the \maketitle command. Note that I am
indenting the contents of the environment: this is not mandatory, but quite useful if you want
to be able to read your code.

On to the more interesting stuff!

1https://www.overleaf.com
2https://texstudio.org. By the way, if you think footnotes are cool, you can create them with \footnote

2

https://www.overleaf.com
https://texstudio.org

3 Structuring Your Document

Pretty much any document ends up being split into different parts. In the article class, you
can split your text into sections, subsections, subsubsections and paragraphs.

Listing 2: Basic text structure

1 \ section{This i s a s e c t i o n }
2 You can wr i t e t ex t in a s e c t i o n .
3
4 \ subs e c t i on {This i s a subs e c t i on }
5 You can a l s o wr i t e t ex t in a subse c t i on .
6
7 \ subsubsec t ion {This i s a subsubsec t i on }
8 You can even wr i t e t ex t in a subsubsec t ion .
9

10 Putting a blank l i n e between two b locks o f
11 text makes them d i f f e r e n t paragraphs .
12
13 \paragraph{You can a l s o wr i t e paragraphs with a t i t l e }
14 Paragraphs can then have contents .

Note that ((sub-)sub-)sections will be automatically numbered by default, like in this docu-
ment. If you don’t want this, you can disable the numbering of a section like in Listing 3. Note
that unnumbered sections will not appear in a table of contents by default.

Listing 3: Unnumbered sections

1 \ section ∗{ Sec t i on without number}
2 \ subs e c t i on ∗{ Subsect ion without number}
3 \ subsubsec t ion ∗{ Subsubsect ion without number}

4 Packages And More On Commands

LATEX has plenty of nice features by default, but some common things you may want to do are
easier with or require external packages to work. We’ll look at how to do that now, since the
following sections will sometimes make use of external packages.

Packages are specified at the start of your file, in the preamble of your document, using the
\usepackage command.

Listing 4: \usepackage example

1 \documentclass{ a r t i c l e }
2 % . . .
3 \usepackage{packagename}
4 %. . .
5 \begin{document}
6 %. . .
7 \end{document}

Sometimes, packages can be configured directly on importation. To do this, the \usepackage
command takes this configuration as an optional parameter. Any command may take optional
or mandatory parameters: optional ones are specified in square brackets, mandatory ones in

3

curly ones. The details depend on the command, and you can find plenty of documentation
online. Note that environments can also use optional parameters.

Listing 5: Command parameter examples

1 \command [op t i ona l]{mandatory}
2 \usepackage{enumitem} % mandatory package name
3 \usepackage [dvipsnames]{ xco l o r } % op t i ona l parameter
4 \begin{ environment } [op t i ona l parameters]
5 %. . .
6 \end{ environment}

5 Listing Things

Whatever you are writing about, you will very often end up listing things at some point. There
are two main ways to make lists in LATEX.

5.1 Itemize

The itemize environment lets you create unordered lists of items. You can put pretty much
anything in this environment, meaning you can also create nested lists as in Listing 6.

Listing 6: itemize example

1 \begin{ i t em i z e }
2 \item
3 Item 1
4 \item
5 Item 2
6 \begin{ i t em i z e }
7 \item
8 Nested item 1
9 \item

10 Nested item 2
11 \end{ i t em i z e }
12 \item
13 Item 3
14 \end{ i t em i z e }

This will render to the following list:

• Item 1

• Item 2

– Nested item 1

– Nested item 2

• Item 3

If you don’t like the symbols used to generate the list, you can modify them using the
enumitem package. Listing 7 is then rendered as the following list:

/ Item 1

4

/ Item 2

Listing 7: itemize labels

1 \usepackage{enumitem}
2 %. . .
3 \begin{ i t em i z e } [l a b e l = /]
4 \item
5 Item 1
6 \item
7 Item 2
8 \end{ i t em i z e }

This is usually more useful with ordered lists.

5.2 Enumerate

The enumerate environment lets you produce ordered lists of items. Its usage is similar to that
of itemize.

Listing 8: Nested enumerate

1 \begin{ enumerate}
2 \item
3 Item 1
4 \item
5 Item 2
6 \begin{ enumerate}
7 \item
8 Nested item 1
9 \item

10 Nested item 2
11 \end{ enumerate}
12 \end{ enumerate}

Listing 8 renders as follows:

1. Item 1

2. Item 2

(a) Nested item 1

(b) Nested item 2

You can also change enumeration labels as in itemize, but doing so is more subtle, as you
cannot simply specify any character: you have to specify a sequence of labels, and the enumitem
package is here to help. The code of the following enumeration is given in Listing 9. Isn’t that
nice?

i. Item 1

a. Nested item 1.1

b. Nested item 1.2

5

ii. Item 2

1) Nested item 2.1

2) Nested item 2.2

Listing 9: enumitem labels

1 \usepackage{enumitem}
2 %. . .
3 \begin{ enumerate } [l a b e l = \roman ∗ .]
4 \item
5 Item 1
6 \begin{ enumerate } [l a b e l = \alph ∗ .]
7 \item
8 Nested item 1 .1
9 \item

10 Nested item 1 .2
11 \end{ enumerate}
12 \item
13 Item 2
14 \begin{ enumerate } [l a b e l = \arabic ∗)]
15 \item
16 Nested item 2 .1
17 \item
18 Nested item 2 .2
19 \end{ enumerate}
20 \end{ enumerate}

6 Text Formatting

There are also commands for text formatting.

• \textit renders its argument in italics.

• \textbf renders its argument in bold font.

• \texttt renders its argument in typewriter font.

• \textsf renders its argument in sans serif font.

• \underline underlines its argument.

7 Math

One of the nice things about LATEX is the math typesetting. You can already do a number of
interesting things without packages, but you will pretty much always end up using the amsfonts,
amsmath and amssymb packages.

\usepackage{ amsfonts }
\usepackage{amsmath}
\usepackage{amssymb}

6

To open an inline math environment, just use a pair of dollars and write anything you need
in between. For example, $ax^2 + bx + c = 0$ renders as ax2 + bx + c = 0. You can also
write equations using the equation environment. Listing 10 renders as the following:

ax2 + bx+ c = 0 (1)

Listing 10: Simple equation

1 \begin{ equat ion }
2 axˆ2 + bx + c = 0
3 \end{ equat ion }

Note that equations are numbered by default, like sections. If you do not want that to
happen, you can simply use the equation* environment instead.

There are many, many things you can do in a math environment, and I cannot list all of
them, but here are a couple of useful commands and environments.

7.1 Useful Commands

• \mathbb with some string as argument: ZQRC. \mathfrak does the same with fraktur:
ABCD. \overline puts a bar on top of its argument: abc. \hat puts a hat on top of a
letter: x̂. Note that you can also use math versions of \textbf and others: \mathbf is
abc.

• For Greek letters, use \letter for the normal version, \Letter for the capital version:
sigma is σ,Σ, delta is δ,∆.

• Infinity is \infty ∞, plus or minus is \pm ±, a left arrow is \leftarrow ←, a long right
arrow is \longrightarrow −→, greater or equal is \geq ≥, lower or equal is \leq ≤, not
equal is \ne ̸=, a subset is \subset ⊂, inclusion in a set is \in ∈.

• Fractions are defined with \frac{numerator}{denominator}: 3
4 ,

−b±
√
b2−4ac
2a . Note that

fractions are often more readable in an equation environment:

−b±
√
b2 − 4ac

2a

• Any sort of bracket (square, curly, ...) can adapt to the size of its content using \left
and \right.
With simple ():

(
−b±

√
b2 − 4ac

2a
)

With \left(and \right): (
−b±

√
b2 − 4ac

2a

)

Much better.

• Exponents can be created with a circumflex accent, indices with an underscore. Note that
these only take one character into account by default, and taking more characters requires
you to put them into curly brackets. Observe the difference between these:

7

x i^2 x2i
x {i^2} xi2
x i^23 x2i 3
x i^{23} x23i

• Math functions like sine, cosine and such have their own operators: \sin(x) is sin(x).
Note that the \sin command (and others) does not take arguments, because some of us
like to write sinx instead. Other commands like \sqrt do take an argument, because the
square root must know what it should contain.

• Sums (\sum), products (\prod), limits (\lim\limits), integrals (\int) and such like to
have bounds written over or under them. You can do this with simple exponent and index
notation, e.g. \sum {i = 0}^n a i is

n∑
i=0

ai

Note that this cannot be rendered in the same way if you write inline math (with dollars):∑n
i=0 ai.

7.2 Useful Environments

• The align environment lets you align multiple equations, i.e. make sure they vertically
align at a specified position. Imagine having to compute the derivative of f defined by
f(x) = 2x. You may want to use multiple equation environments for that, like in the
following:

df

dx
(a) = lim

x→a

x2 − a2

x− a

= lim
x→a

(x− a)(x+ a)

x− a

= lim
x→a

x+ a

= 2a,

which is horrible. Luckily, you can use the align environment to specify that the lines
must be aligned according to the equality symbol they contain. You can use an ampersand
(’&’) inside the environment to do this, as in Listing 11.

Listing 11: align example

1 \begin{ a l i g n ∗}
2 \ frac {df }{dx}(a) &= \ lim\ l imits {x \rightarrow a} . . . \\
3 &= \ lim\ l imits {x \rightarrow a} \ frac {(x − a) (x + a)}{x − a} \\
4 %. . .
5 &= 2a
6 % note the \\ at the end o f each l i n e (excep t f o r the l a s t)
7 \end{ a l i g n ∗}

8

df

dx
(a) = lim

x→a

x2 − a2

x− a

= lim
x→a

(x− a)(x+ a)

x− a

= lim
x→a

x+ a

= 2a

Much better. You can also use multiple & per line if you want to align more than one
thing.

• The cases environment is similar to align, but is used when you want to distinguish
multiple cases in an equation. The following is shown in Listing 12. Note that the cases
environment must itself be contained in a math environment, unlike align.

max(a, b) =

{
a, a > b

b, a ≤ b

Listing 12: cases example

1 \begin{ equat ion ∗}
2 \max(a , b) =
3 \begin{ ca s e s }
4 a , &a > b \\
5 b , &a \ leq b
6 \end{ ca s e s }
7 \end{ equat ion ∗}

8 Labels And References

Noticed how this document is full of references to listings, and how the numbers always match?
This is automatically managed by labels and references. You can define a label using the
\label command, which takes a name as argument. A common practice is to have a label
name of the form kind-of-thing:name-of-thing, so a label inside an equation would look like
eq:cauchy-riemann, or equation:amdahl (just make sure you stay consistent), while a listing
might look like lst:align. This assigns a number to the label you defined, and using the
command \ref with a label name gives you back the number that was assigned. For example,
labeling a section and referencing it would give you the section number. If you do the same
with a listing, it would give you the listing number, and the same with an equation.

As an example, I am going to label and refer to this section as follows:

Listing 13: label example

1 \ label { s ec : l ab e l s−r e f e r e n c e s }
2 This i s Sec t i on \ ref { s ec : l ab e l s−r e f e r e n c e s }

This is Section 8.
If you don’t want to type the kind of thing you are referring to every time you use a reference,

you can use the cleveref package instead:

9

1 \usepackage{ c l e v e r e f }
2 %. . .
3 This i s \Cref { s ec : l ab e l s−r e f e r e n c e s }

This is Section 8.
Note that some environments take a label name as optional argument, so you may not always

have to use \label directly. Take a look at this document’s source for examples.

9 Centering Things

As we will shortly discuss tables and figures, you may want to know how to horizontally center
objects within a page, be it text, images or anything else. LATEX provides the \centering
command and the center environment, which essentially do the same thing, except that center
adds some vertical space that you may find convenient.

Listing 14: \centering and center

1 % Notice the b r a c k e t s ! They t e l l \ cen t e r ing where to s top .
2 % Without them you may end up cen t e r ing too many t h i n g s .
3 % Also note t ha t the t e x t i s terminated by \\ (or an empty l i n e)
4 {\centering
5 Here i s a c en t e r i ng example . \\
6 }
7
8 \begin{ cente r }
9 And here i s a c ente r example .

10 \end{ cente r }

Here is a centering example.

And here is a center example.

10 Tables

To create a table, you first have to determine how many columns it will contain and how text
will be aligned within them.

Listing 15: Basic table structure

1 \begin{ t ab l e } [opt ions]
2 \centering
3 \begin{ tabu la r }{column s p e c i f i c a t i o n }
4 %. . .
5 \end{ tabu la r }
6 \end{ t ab l e }

Note that the columns specification is mandatory. Every column is specified by a letter: l is
for left-alignment, c for centering, r for right-alignment. crr would thus declare three columns,
the first one being horizontally centered and the two other ones being aligned to the right.
Columns can also be separated by vertical lines, which are specified with a vertical bar (’—’).
The specification |c|rr| declares three columns with the same alignments as before, but now
the table has vertical bars to the right and left, as well as a vertical separation between the first
and second columns.

10

The optional table parameters define the position of the table with respect to the text.
To make it (mostly) attached to the previous paragraph, you can use ht. Otherwise, LATEX
is allowed to place your tables at whatever location it determines is best. You’ll observe that
LATEX has a lot of freedom to when it comes to placing objects.

The content of the table is specified in a way similar to the align environment: you can
use ampersands to tell LATEX where the cells of your table end. Lines are also terminated by
\\. An example is given in Listing 16. Note the addition of \hline: this command adds a
horizontal line above the current line, which is quite useful depending on the table format you
want to have.

Listing 16: Table content example

1 \hline f i r s t c e l l , f i r s t l i n e & second c e l l , f i r s t l i n e \\
2 \hline f i r s t c e l l , second l i n e & second c e l l , second l i n e \\
3 %. . .

A complete example is given in Table 1. You can note that lines 3, 4 and 5 do not declare
a hline, and that you do not have to put content in cells, as in the last line.

Table 1: table example
Item Cost Quantity Total

Apple 4 3 12
Broccoli 8 2 16
Coriander 5 3 15
Dill 2 4 8

51

11 Images And Figure Environments

To add images to your document, you should use the graphicx package:

\usepackage{ graphicx }

The easiest way to include an image is to directly use the \includegraphics package as
follows:

\ i n c l udeg r aph i c s [opt ions]{ path/ to / image}

The optional arguments control for example whether the image should be resized, cropped or
rotated. The path may be absolute or relative. It is common practice to put all of your images
inside one or multiple predefined directories like images/ or res/images/. In that case, typing
the base directory of every image in your document is annoying, and you can tell graphicx
where it should look for images using \graphicspath:

\ graph icspath {{path/ to / images 1/} {path/ to / images 2/}}

Note that your directories must be separately enclosed by curly braces, and they must end
with a /. Check out the source for an example!

Usually, simply adding an image is not sufficient for your needs: you want captions, labels
and some control over the location of your image. Worry not, for the figure environment is
here to help. It can be used as in Listing 17. The position of the \caption command determines
whether the caption is positioned above or below the image.

11

Listing 17: figure example

1 \begin{ f i g u r e } [ht]
2 \ label { img : example}
3 \centering
4 \ i n c l udeg r aph i c s [opt ions]{ path/ to / image}
5 \caption{Caption example}
6 \end{ f i g u r e }

Figure 1: Image example

Sometimes, you want your text to wrap around your image instead of being separated.
Without surprise, there is a package for that:

\usepackage{wrapf ig }

The wrapfigure environment works mostly like figure, but you have to give it two manda-
tory arguments instead of optional ones: the image position with respect to the text, and the
width of the figure. LATEX offers many ways to specify lengths, but I think the most useful one
is the \textwidth command. If you want something to use half of the space available for text,
you can give it a width of 0.5\textwidth. The position argument is specified with one letter,
the most commonly used ones being r and l for right and left, respectively. You can also use
capital letters if you want to let LATEX decide where to put the figure.

Listing 18: wrapfigure environment

1 \begin{wrapf igure }{ po s i t i o n }{ image width}
2 %. . .
3 \end{wrapf igure }

12 Bibliography

Last but not least, you may want to list your sources in a pretty bibliography using biblatex:

\usepackage [
% not necessary , but recommended (you need to i n s t a l l b i b e r)
backend = bibe r

]{ b ib l a t ex }

You can then specify your sources in a separate file, which you must declare using the
\addbibresource command:

\ addbibresource {path/ to / sourc e s . bib }

12

The general format to specify a source is as follows:

Listing 19: biblatex source format

1 @<source−type>{ l abe l ,
2 % example f i e l d s
3 t i t l e = ”Nice T i t l e ” ,
4 author = ”LastName1 , FirstName1 and Last 2 , F i r s t 2 and Last 3 , F i r s t 3” ,
5 u r l = ”www. example . com”
6 % other ” f i e l d = va lue ” pa i r s
7 }

There are many types of sources and fields, many of which you can easily find online, for
example in this neat cheat sheet.

Once you have your sources, you can cite them in your document using the \cite command:

Something something as showed in \ cite { l a b e l } .

Where label is the name you gave to your source in the .bib file. You can then display your
bibliography at the end of your document using the \printbibliography command. biblatex
also lets you change the style of your citations or bibliography.

License

Copyright © 2022 David Dervishi. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license can be found under https:

//www.gnu.org/licenses/fdl-1.3.html.

13

http://tug.ctan.org/info/biblatex-cheatsheet/biblatex-cheatsheet.pdf
https://www.gnu.org/licenses/fdl-1.3.html
https://www.gnu.org/licenses/fdl-1.3.html

	Introduction
	Writing LaTeX

	Minimal Example
	Structuring Your Document
	Packages And More On Commands
	Listing Things
	Itemize
	Enumerate

	Text Formatting
	Math
	Useful Commands
	Useful Environments

	Labels And References
	Centering Things
	Tables
	Images And Figure Environments
	Bibliography

